
Episode 404: Gravitational potential energy and potential

In this episode, students will appreciate the changes to the ways that energy is stored as a body moves in a gravitational field. They have seen this concept before, for a uniform gravitational field, in the form

change in energy stored gravitationally, or change in gravitational potiential energy = m x g x Δh

where Δh = change in height, but this will be generalised to non-uniform fields around point or spherical masses. They will then be introduced to the concept of gravitational potential and its uses, before finally making the link between that rate at which gravitational potential changes from place to place and the field strength.

Note that the mention of infinity often gets students’ minds racing, and puzzling over seeming paradoxes such as “If the gravitational field is infinite in extent, what does it mean to be at infinity where the field is zero?” It’s best to approach this pragmatically; by infinity, we really mean as far away from all masses in the universe as we need to be to make the gravitational forces negligible in whatever context we are looking at.

This is quite a long episode, and worth spending the time on to give a good grounding in these ideas. They will be important again with electric fields.

Lesson Summary

· Discussion: Work and energy (5 minutes)

· Worked examples: Energy in a constant gravitational field (10 minutes)

· Discussion: Energy in a non-uniform field (10 minutes)

· Discussion: Potential (5 minutes)

· Worked examples: Energy and potential (15 minutes)

· Student questions (15 minutes)

· Spreadsheet exercise (20 minutes)

· Discussion: Equipotentials, potential gradient and field strength (10 minutes)

· Spreadsheet exercise: Potential gradient and field strength (20 minutes)

Discussion: Work and Energy

This draws on what students should already know about work and energy.


What is work? (Work is done when a force moves its point of application through some distance in the direction of the force. In the absence of frictional forces, this work done is stored as the energy of the body on which the force was acting.)

If I lift an object up from the floor to above my head (demonstrate it!), have I done work on it? (Yes. I applied an upwards force on the object which itself moved upward too.)

What happened to the work I did on the object? (It is stored as energy of the object. We say that the energy is stored gravitationally. 'Gravitationally' because we have to do work against gravity to lift the object. If you have something breakable (but safe and cheap!) they will really see this energy being realised.)

Worked examples: Energy in a constant field

Now, students have come across these ideas before at pre-16 level in the form:

Change in EG = mgh.

It is as well to revise this with a few worked examples now.

Episode 404-1: Energy in a constant field (Word, 26 KB) - see end of document
Discussion: Energy in a non-uniform field

Now you can extend these ideas to energy in a non-uniform field.

All the previous examples involved changes to the energy stored gravitationally near the surface of the Earth. What would be the problem if we wanted to use the same equation to work out changes to the energy stored gravitationally for, say, a rocket launched to the moon? (The gravitational field strength is not constant – the value of g changes.)

We therefore need another way of calculating changes to the energy stored gravitationally in non-uniform fields. The full treatment of how we arrive at this formula requires off-syllabus calculus that would actually be accessible to more able students. We find that we can calculate energy of a mass m at a point distance r from a (point or spherical) mass M by:

EG =   −  GMm/r
There are several very important points to note about this equation:

1. We know that the further you get from an object, the greater the energy stored in the gravitational field. (As something must have done more work against gravity to get you there). Thus when you are infinitely far away, you have as high an energy relative to it as possible. We choose (arbitrarily) to make the value of energy of all bodies at infinity zero. Then since this is the highest value of energy, all real values of energy stored gravitationally (closer than infinity) must be negative. Therefore the minus sign in the equation is not optional; it must always be included and all values of energy stored in a gravitational field are negative. (This is not the case when we come on to electric fields, because they can be repulsive too).

2. Note that we have written energy here, and not Change in energy. By defining a point relative to which all energy is measured, we can now talk about absolute values of energy rather than just changes. This point is at infinity (see note 1 above).

3. Note that energy follows an inverse proportion law (1/r) and not an inverse square law (1/r2) 
Discussion: Potential

The weight of an object in the Earth’s gravitational field depends upon the mass of the object (as well as the mass of the Earth). However, as we have already seen, the field strength at a point is independent of the object placed there (because it is defined as force per unit mass of the object). Thus we can think of field strength as a property of the field at a point, and not the particular object placed there.

Similarly, the energy stored in the gravitational field by moving a body to a place relative to the Earth depends upon the mass of the object (as well as the mass of the Earth) and the distance between them. How do you think we can get a quantity related to energy in the field at a point, which does not depend upon the object placed there? (By looking at the energy stored per unit mass of the object, thus removing the dependence on the mass of the object just as we did with field strength.)

We define the potential at a point in a field as the energy per unit mass stored by placing 1kg at that point in the field. We can get equations for potential using this definition. For a field due to a (point or spherical) mass M, we have:

EG =  −  GMm/r
And so the potential, V , is given by:

V =  −  GM/r
A few points to make:

1. This only relates to the field due to a (point or spherical) mass M.

2. V is measured in J kg-1. It follows an inverse proportion law (1/r) not inverse square (1/r2).

3. Just as with the equation for energy, the minus sign is not optional. All real potentials are negative, and the zero of potential is at infinity (since all objects store no energy gravitationally at infinity).

4. Potential, like field strength is a property of the field at a point, and is independent of the object placed there. Two objects with different masses at the same point in the field are subject to the same potential, but have different energies.

5. For uniform fields (e.g. close to the surface of the Earth), we can use

change in potential = gh
(since change in EG = mgh and potential = EG/m
(Potential will be returned to again when we study electric fields. There, differences in potential (or potential differences, pds) are what we often call voltages.)

Worked examples:Energy and potential

Episode 404-2: Energy and potential (Word, 30 KB) - see end of document
Student questions

These questions relate to a spacecraft travelling from the Moon to the Earth.

You may wish to omit questions 3–5 inclusive if your students have not covered the topic of momentum.

Episode 404-3: Gravitational field between Earth and moon (Word, 74 KB) - see end of document
Spreadsheet exercise

You can extend the spreadsheet activity from Episode 402 by including the idea of gravitational potential.

Episode 402-3: Data from the Apollo 11 mission (Word, 85 KB) - see end of document
Episode 404-4: Analysing Apollo 11 data, gravitational potential (Word, 29 KB) - see end of document
Discussion: Equipotentials, potential gradient and field strength
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Equipotentials join points of equal potential. They are very simple in the cases of uniform fields (close to the surface of the Earth) and radial fields (for point and spherical masses):

How far apart are the equipotential lines in the first diagram? (Since change in potential for a constant field is simply gh (where h is change in height), we have gh = 9.8 J kg-1 }. Therefore h = 1 m – the lines are 1 m apart.)
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What shapes are equipotentials in the real world? (Equipotentials are surfaces rather than lines in the real 3-dimensional world (i.e. horizontal planes rather than lines close to the surface of the Earth, and concentric spheres rather than concentric circles about a point/spherical mass), but we can only capture a slice of them on paper.)

Equipotentials are always perpendicular to field lines. Diagrams of equipotential lines give us information about the gravitational field in much the same way as contour maps give us information about geographical heights.

What does it mean on a contour map if the contours are very close together? (On a contour map, the contours may be marked off at, say, 5 m intervals. Therefore, if they are close together, it means that the land on which they lie must be very steep.)
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What do you think it therefore means if equipotential surfaces are close together? (An educated guess would be that it means that the gravitational field is very strong there. That would be correct – if the equipotentials are close together, a lot of work must be done over a relatively short distance to move a mass from one point to another against the field – i.e. the field is very strong. Hence on the drawing above of the equipotentials around point or spherical masses, the equipotential surfaces get further and further apart as the field strength decreases with distance.)

In fact, the field strength is given by the negative of the gradient of the potential:-
g = − Δ V/ Δ  r
For students that might struggle with a derivative as above, it could be introduced as:

g = − change in potential/change in distance
Spreadsheet exercise: Potential gradient and field strength

In this exercise, students will manipulate (calculated) raw data on the variation of potential with height above the Earth’s surface. By the end, they will calculate the change in potential per metre (i.e. the potential gradient) and compare it to field strength and find that the two are equal. When they calculate the change in potential between say 200 km and 300 km, and divide it by the 100 km distance to get a field strength, they are actually getting an average field strength between 200 km and 300 km, which is likely to be very close to the field at 250 km (though not exactly because the variation in potential is non-linear). Hence the field strengths on sheet 2 being given at 50 km, 150 km, etc.

They are expected to have used spreadsheets before and are asked to do some fairly simple spreadsheet manipulations.

Episode 404-5: Potential gradient and field strength (Word, 28 KB) - see end of document
Episode 404-6: Excel file potential gradient and field strength (Word, 53 KB) - see end of document
Episode 404-1: GPE in a constant field

Assume g = 9.8 N kg-1 near the surface of the Earth.

1) 
Climbing a vertical rope is difficult. You have to lift your full body weight with your arms. If your mass is 60 kg and you climb 2.0 m, by how much do you increase your gravitational potential energy?

2) 
A block of bricks is raised vertically to a bricklayer at the top of a wall using a pulley system. If the block of bricks has a mass of 24 kg, what is its weight? It is raised 3.0 m. Calculate its increase in gravitational potential energy when it reaches the top of the wall.

3) 
Travelling in a mountainous area, a bus of mass 3 tonnes reaches the edge of a steep valley. There is a 1 km vertical drop to reach the valley below, but 20 km of road to get there. What will be the change in the energy stored gravitationally when the bus is at the valley bottom?

4) 
Assuming the bus in question 3 does not change its cruising speed on the way down, where does the energy stored gravitationally go? Why is there a risk of brake failure in this situation?

Practical advice

These are straightforward questions. The questions are available as worked examples or for students to work themselves

Answers and worked solutions

1 
GPE = mgh = 60 x 9.8 x 2 = 1176 = 1200 J (2sf)

2 
Weight = mg = 24 x 9.8 = 235.2 = 240 N (2sf)

Change in GPE = mgh = 24 x 9.8 x 3.0 = 705.6 = 710 J (2sf)

3 
Change in GPE = mgh = 3000 x 9.8 x 1000 = 2.94 x 107 = 2.9 x 107 J (29 MJ) (2sf)

4 
Since the bus gains no kinetic energy (its speed stays the same) it must be using its brakes, and change in energy stored gravitationally by the bus in now stored thermally in the brakes. There is a risk of brake failure if the brakes overheat.

External reference

This activity is taken from Advancing Physics chapter 11, 210S

Episode 404-2: Potential energy and potential

Students’ sheet

Data required:

G = 6.67 ( 10-11 N m2 kg-2
mass of the Earth = 6.0 ( 1024 kg

radius of the Earth = 6.4 ( 106 m

gravitational field strength close to the surface of the Earth is 9.8 N kg-1
1) 
What is the gravitational potential energy of a 60 kg student on the surface of the Earth? 
What then, is the minimum energy that would be required to get this student completely 
out of the Earth’s gravitational field?

2) 
What is the potential you experience at the surface of the Earth? How would the answer 
be different if your friend who weighs more than you worked it out?

3) 
What is the potential at a height of 36 000 km from the Earth’s surface? This is the height 
of a geostationary orbit. What is the potential difference between the surface of the Earth, 
and geostationary orbit height? 

4) 
So, what minimum energy is required to launch a 150 kg satellite into geostationary orbit? 
Why is the actual value a lot more?

5) 
What is the potential difference between the top and bottom of an office block on the surface of the Earth that has a height of 50 m? (Hint – this close to the surface of the Earth, the field is roughly uniform, so you can use simple equations for change in GPE or change in potential).

Practical advice

The answers are given as worked examples for the teacher.  The sheet can be used either as worked examples or a student exercise

Worked examples – potential energy and potential – teacher’s sheet

Data required:

G = 6.67 ( 10-11 N m2 kg-2
mass of the Earth = 6.0 ( 1024 kg

radius of the Earth = 6.4 ( 106 m

gravitational field strength close to the surface of the Earth is 9.8 N kg-1
1) 
What is the gravitational potential energy of a 60 kg student on the surface of the Earth? 
What then, is the minimum energy that would be required to get this student completely 
out of the Earth’s gravitational field?

GPE = -GMm/r = (- 6.67 x 10-11 x 6.0 x 1024 x 60) / 6.4 x 106 = - 3.8 x 109 J

To get the student away from the Earth’s field completely will require taking him to infinity where his GPE will be zero. Thus we need to give him at least 3.8 x 109 J of energy somehow.

2) 
What is the potential you experience at the surface of the Earth? How would the answer 
be different if your friend who weighs more than you worked it out?

V = -GM/r = (-6.67 x 10-11 x 6.0 x 1024) / 6.4 x 106 = - 6.3 x 107 J kg-1 or - 63 MJ kg-1
The answer is the same for everyone – potential is a property of the field and all objects at the same point in the field are subject to the same potential, even though their potential energies may be different.

3) 
What is the potential at a height of 36 000 km from the Earth’s surface? This is the height 
of a geostationary orbit. What is the potential difference between the surface of the Earth, 
and geostationary orbit height? 

V = -GM/r = (-6.67 x 10-11 x 6.0 x 1024) / (6.4 x 106 + 3.6 x 107) = -9.4 x 106 J kg-1 or 
-9.4 MJ kg-1
The potential difference is then - 9.4 – (- 63) = 53 MJ kg-1 (or 5.3 x 107 J kg-1).

Note that this potential difference is positive; indicating that to get to geostationary height, a large amount of energy would be required. There is no problem with potential differences being positive, but absolute values of potential themselves must always be negative.

4) 
So, what minimum energy is required to launch a 150 kg satellite into geostationary orbit? 
Why is the actual value a lot more?

Well, we now know that the potential difference between the Earth’s surface and the geostationary orbit height is + 5.3 x 107 J kg-1. In other words, for each kg of mass lifted from Earth to geostationary orbit, 5.3 x 107 J of energy is required. Therefore, for a satellite of mass 150 kg, energy required = 150 x 5.3 x 107= 8.0 x 109 J or (or 8.0 GJ).

Actually, much more energy is required because there is drag with the Earth’s atmosphere to overcome on the way up, and also the rocket itself (and its fuel) have mass that needs to be lifted into orbit too! The answer we’ve arrived at is only the energy required to lift the satellite against the gravitational pull of the Earth.

5) 
What is the potential difference between the top and bottom of an office block on the 
surface of the Earth which has a height of 50 m? (Hint – this close to the surface of the 
Earth, and the field is roughly uniform, so you can use simple equations for change in 
GPE or change in potential). What minimum energy do you use in walking up to the top 
of the building?

For a uniform field, change in potential = gh = 9.8 x 50 = 490 J kg-1
For a 60 kg student, the energy required to climb to the top of the building is then 60 x 490 = 2.94 x 104 = 2.9 x 104 J or 29 kJ. For information, that’s about 7 kcal where a kcal is what is referred to as a ‘calorie’ on diet adverts. A chocolate bar is typically 200 calories or more! Students can rest assured that they use up more energy than this in climbing to the top of the building because their bodies are not 100 % efficient, and they warm up.

Episode 404-3 Gravitational field between the Earth and the Moon

The dynamics of space travel

These questions pose a number of short problems about the dynamics of the motion of a spacecraft, returning from the Moon to the Earth. The mass of the spacecraft is 2000 kg.
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The diagram shows its path and is drawn to scale (except for the diameters of the Earth and the Moon which are shown larger than they should be). Distances given are to the centre of the Earth.

mean radius of Earth as 6.4 106 m, G x M for the Earth = 4.0 1014 N m2 kg–1 

Gravitational force and gravitational potential energy

1.
At point A the spacecraft has zero acceleration when its thrust motor is switched off. 
Suggest a reason why. 

2.
At point B, again without any motor thrust, the speed of the spacecraft is constant, though 
it does have acceleration. (At B, the craft is travelling at right angles to the line joining it to the Moon’s centre.) Explain this observation. 

3.
At C, the velocity is 6000 m s–1, as shown. It is required to alter course by an angle of 
1/100 rad, without changing speed.


In what direction must the thrust be? 


Calculate the length of time for which the motor thrust of 12 000 N be maintained? 

4.
In which direction is the spacecraft accelerating at D if the thrust motor is not in use? 

Calculate the magnitude of the change its in momentum of the space craft over a time of 100 s. Ignore any effect of the Moon in this question. 

5.
Make a rough calculation to show it is fair to ignore the effect of the Moon in question 4. 

Ignore any effects of the Moon in questions 6–8.

6.
The thrust motors are not used between C and E. 

Calculate the change in gravitational potential energy of the spacecraft change between C and E? 


Explain whether it is an increase or a decrease, and whether the answer would have 
been different if the motors had been used. 

7.
At C the spacecraft’s velocity is 6000 m s–1. 


Use your answer to calculate the kinetic energy of the spacecraft at E.

8
What kinetic energy would the spacecraft have at E if, instead of having come in 

from Moon orbit, the spacecraft were in permanent orbit around the Earth 

through E?

Hints

1.
Consider both the magnitude and direction of the forces acting on the spacecraft at A.

2.
Both the Moon and the spacecraft will have mass and there will be a gravitational force of attraction between them.

3.
Remember acceleration can be produced by a change in direction as well as speed.

5.
Remember this is a scale drawing.

6.
The gravitational potential is 0 J kg-1 at infinity.

7.
You can assume conservation of mechanical energy when there is no work done against 
friction to be considered and the motors are not in use.

Practical advice

It is helpful to remind students that the distances in the drawings are to scale and they will need to measure them with a ruler (in question 5).

Social and human context

These are useful questions to consider when discussing manned missions to the Moon. There are many video clips that could be useful to put these journeys into a historical perspective. This could lead to discussions on the reasons for the ‘space race’; consideration as to which explorations are seen as prestigious in the present day; and the social and economic implications of the high budget demands of pure and applied research. Is such research likely to help or hinder increased international cooperation?

Answers and worked solutions

1.
The force of attraction between the spacecraft and Earth is equal in magnitude but 
opposite in direction to the force of attraction between the spacecraft and the Moon. 
There is no net force, so no acceleration.

2.
The gravitational force is at right angles to the direction of motion, so there is no change 
in speed. The direction, however, will change so that the force is always acting from the 
centre of the spacecraft to the Moon. Since there is a change in direction, there is a change in velocity, therefore there is acceleration.

3.
The thrust acts at right angles to the speed, since this does not change.
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As shown in the vector triangle the change in velocity v is v (for a small angle ), F = (mv)/t
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4.
If the thrust motors are not used, the only force acting on the spacecraft is the gravitational force of attraction between the Earth and the spacecraft; this acts towards the centre of the Earth.

F t = change in momentum and since 

F = – (G M m) / R2
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5.
The measured distance from D to the Moon is three times the distance from D to the Earth. This means that the gravitational force of attraction on the spacecraft due to the Moon (an inverse square law) would be 1/9 that due to the Earth if the Earth and Moon had the same mass. But the Moon’s mass is smaller than Earth’s, and thus it is fair to ignore it in these calculations.

6.
The change in gravitational potential energy =
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Since gravitational potential is 0 at infinity and work needs to be done to reach infinity, the gravitational potential energy is less at a distance closer to the centre of a gravitational field, in this case at E. Since gravitational potential energy is a scalar quantity and does not depend on the path taken, this value is the same as if the motors had been used to move between C and E.

7.
From conservation of mechanical energy (no work done against friction, motors not used), the decrease in gravitational potential energy = increase in kinetic energy, 3.6  1010 J. At C, the kinetic energy was already 0.5  2000 kg  (6000 m s–1)2 = 3.6  1010 J so the total kinetic energy is 7.2 1010 J.

8.
For a circular orbit:
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External reference

This activity is taken from Advancing Physics chapter 11, 120D

Episode 404- 4: Analysing data from the Apollo 11, gravitational potential at different distances

A large-scale experiment in space

Detailed data are kept of every space flight. These data, giving speeds and distances of Apollo 11 as it went to and returned from the Moon, are extracted from data supplied by NASA. They can be thought of as the results of an experiment to probe Earth’s gravitational field.

You will need

· computer running a spreadsheet

· spreadsheet data table

· the Excel file below

TAP 402-3 'Data from the Apollo 11 mission' is provided to go with this activity.

Finding the gravitational potential at different distances

The raw data can be used to find how the Earth’s gravitational potential varies with distance. Again you need to select and process suitable data.

Notice by inspecting the data that Apollo 11 has decreasing kinetic energy as it ‘goes uphill’ away from the Earth, and has increasing kinetic energy as it comes back ‘downhill’ to Earth again. Any increase in gravitational potential shows up as a decrease in the kinetic energy per kilogram, ½v2. Equally, any decrease in gravitational potential shows up as an increase in the kinetic energy per kilogram, ½v2. The two quantities are equal but opposite. Thus a graph of minus ½v2 maps the gravitational potential, except for an unknown constant, the total energy.

1.
Choose either the outward or homeward trip (they have different total energies) and 
select velocities and distances, one from each 10 minute spaced pair given.

2.
Calculate the kinetic energy per kilogram ½v2 for each.

(i)
Plot graphs relating the quantity minus ½v2 to the distance r. 

(ii)
Test whether the gravitational potential varies as 1 / r 

(iii)
Take trouble to find the best graphs to plot. 

(iv)
Give the graphs a caption saying what they have to tell

Practical advice

These data are selected from a huge printout supplied by NASA. More data is provided here so that it can be looked at and discussed, and so that further analyses can be done. We think that there is also some interest in imagining the whole mission, which is why times from throughout the 200-hour mission are included.

The exercise also provides students with further opportunities to think about the most effective graph to plot. It is worth insisting that graphs have captions that convey their intended message.

Alternative approaches

Slower students will benefit from simply looking at the data with you, and talking them through. Faster ones can for example plot the variation of potential for both outward and homeward trips and try to explain the small difference between them

Social and human context

NASA’s raw data were actually provided with distances in nautical miles above the surface of the Earth, and with velocities in knots.

External references

This activity is taken from Advancing Physics chapter 11, 240S

The spreadsheet is taken from Advancing Physics chapter 11, 160T

Episode 404- 5: Potential Gradient and Field Strength

The accompanying spreadsheet gives values of gravitational potential V at 100 km intervals from the surface of the Earth (calculated using V = –GM/r).

You will need

· computer running a spreadsheet

· spreadsheet data table

· the Excel file (see link below)

TAP 404-6: Excel file “potential gradient and field strength”
You are asked to complete the following tasks, in order to make the link between gravitational potential and field strength. You will be filling in the various columns in the table that are as yet uncalculated.

Look at the spreadsheet formula used to calculate the potential – can you explain each part of it?

In the next column, work out the change in potential that occurs (to 3 decimal places) over each 100 km interval. This change in potential decreases the further up you go. Why?

Consider equipotentials at, say, 2 MJ/kg intervals. What must be happening to the spacing of these equipotentials? Why does this happen?

At what height has the potential become half of its value at the surface? A third? Explain.

Now, you are going to relate the rate at which potential changes to the field strength. You have already calculated the change in potential over each 100 km interval. Dividing this by the 100 km interval will give the rate of change of potential with distance. This should give the field strength, since g = -dV/dr (the minus sign simply shows that the field acts towards the earth).

Fill in the next column of the table by converting the changes in potential from MJ/kg to J/kg.

Divide each change in potential (in J/kg) by 100 000 metres (i.e. 100 km) to fill in the final column, “Change in potential per metre (N/kg).” Why is the unit used here N/kg?

(i) Compare the data you have just calculated to the data for field strengths given on sheet 
2 of the Excel file.

(ii) Can you explain why your final column data matches the data for field strengths given on 
sheet 2, but where your data is for 100 km, 200 km, 300 km etc, the field strength data is 
for 50 km, 150 km, 250 km etc?

Episode 404- 6: Excel file “potential gradient and field strength”

Double click on the table below.  An excel file should open.  Note that there are two workbooks


[image: image11.emf]Gravitational Constant, G 6.67E-11Nm^2kg^-2

Mass of the earth, M 5.98E+24kg

Radius of the earth, R 6.38E+06m

Height (km)Potential (MJ/kg)

Change in 

potential (MJ/kg)

Change in 

potential 

(J/kg)

Change in 

potential 

per metre 

(N/kg)

0 #DIV/0! - - -

100 0.0

200 0.0

300 0.0

400 0.0

500 0.0

600 0.0

700 0.0

800 0.0

900 0.0

1,000 0.0

1,100 0.0

1,200 0.0

1,300 0.0

1,400 0.0

1,500 0.0
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		Height (km)		Field Strength (N/kg)

		50		9.65

		150		9.35

		250		9.07

		350		8.81

		450		8.55

		550		8.31

		650		8.07

		750		7.85

		850		7.63

		950		7.42

		1,050		7.23

		1,150		7.03

		1,250		6.85

		1,350		6.68

		1,450		6.51

		1,550		6.34

		1,650		6.19

		1,750		6.03

		1,850		5.89

		1,950		5.75

		2,050		5.61

		2,150		5.48

		2,250		5.36

		2,350		5.23

		2,450		5.12

		2,550		5.00

		2,650		4.89

		2,750		4.79

		2,850		4.68

		2,950		4.58

		3,050		4.49

		3,150		4.39

		3,250		4.30

		3,350		4.21

		3,450		4.13

		3,550		4.05

		3,650		3.96

		3,750		3.89

		3,850		3.81

		3,950		3.74

		4,050		3.67

		4,150		3.60

		4,250		3.53

		4,350		3.46

		4,450		3.40

		4,550		3.34

		4,650		3.28

		4,750		3.22

		4,850		3.16

		4,950		3.11

		5,050		3.05

		5,150		3.00

		5,250		2.95

		5,350		2.90

		5,450		2.85

		5,550		2.80

		5,650		2.76

		5,750		2.71

		5,850		2.67

		5,950		2.62

		6,050		2.58

		6,150		2.54

		6,250		2.50

		6,350		2.46

		6,450		2.42

		6,550		2.39

		6,650		2.35

		6,750		2.31

		6,850		2.28

		6,950		2.24

		7,050		2.21

		7,150		2.18

		7,250		2.15

		7,350		2.12

		7,450		2.09

		7,550		2.06

		7,650		2.03

		7,750		2.00

		7,850		1.97

		7,950		1.94

		8,050		1.92

		8,150		1.89

		8,250		1.86

		8,350		1.84

		8,450		1.81

		8,550		1.79

		8,650		1.77

		8,750		1.74

		8,850		1.72

		8,950		1.70

		9,050		1.68

		9,150		1.65

		9,250		1.63

		9,350		1.61

		9,450		1.59

		9,550		1.57

		9,650		1.55

		9,750		1.53

		9,850		1.51

		9,950		1.50

		10,050		1.48

		10,150		1.46

		10,250		1.44

		10,350		1.43

		10,450		1.41

		10,550		1.39

		10,650		1.38

		10,750		1.36

		10,850		1.34

		10,950		1.33

		11,050		1.31

		11,150		1.30
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		Gravitational Constant, G						6.67E-11		Nm^2kg^-2

		Mass of the earth, M						5.98E+24		kg

		Radius of the earth, R						6.38E+06		m

		Height (km)		Potential (MJ/kg)		Change in potential (MJ/kg)		Change in potential (J/kg)		Change in potential per metre (N/kg)

		0		0.0		-		-		-

		100		0.0

		200		0.0

		300		0.0

		400		0.0

		500		0.0

		600		0.0

		700		0.0

		800		0.0

		900		0.0

		1,000		0.0

		1,100		0.0

		1,200		0.0

		1,300		0.0

		1,400		0.0

		1,500		0.0

		1,600		0.0

		1,700		0.0

		1,800		0.0

		1,900		0.0

		2,000		0.0

		2,100		0.0

		2,200		0.0

		2,300		0.0

		2,400		0.0

		2,500		0.0

		2,600		0.0

		2,700		0.0

		2,800		0.0

		2,900		0.0

		3,000		0.0

		3,100		0.0

		3,200		0.0

		3,300		0.0

		3,400		0.0

		3,500		0.0

		3,600		0.0

		3,700		0.0

		3,800		0.0

		3,900		0.0

		4,000		0.0

		4,100		0.0

		4,200		0.0

		4,300		0.0

		4,400		0.0

		4,500		0.0

		4,600		0.0

		4,700		0.0

		4,800		0.0

		4,900		0.0

		5,000		0.0

		5,100		0.0

		5,200		0.0

		5,300		0.0

		5,400		0.0

		5,500		0.0

		5,600		0.0

		5,700		0.0

		5,800		0.0

		5,900		0.0

		6,000		0.0

		6,100		0.0

		6,200		0.0

		6,300		0.0

		6,400		0.0

		6,500		0.0

		6,600		0.0

		6,700		0.0

		6,800		0.0

		6,900		0.0

		7,000		0.0

		7,100		0.0

		7,200		0.0

		7,300		0.0

		7,400		0.0

		7,500		0.0

		7,600		0.0

		7,700		0.0

		7,800		0.0

		7,900		0.0

		8,000		0.0

		8,100		0.0

		8,200		0.0

		8,300		0.0

		8,400		0.0

		8,500		0.0

		8,600		0.0

		8,700		0.0

		8,800		0.0

		8,900		0.0

		9,000		0.0

		9,100		0.0

		9,200		0.0

		9,300		0.0

		9,400		0.0

		9,500		0.0

		9,600		0.0

		9,700		0.0

		9,800		0.0

		9,900		0.0

		10,000		0.0

		10,100		0.0

		10,200		0.0

		10,300		0.0

		10,400		0.0

		10,500		0.0

		10,600		0.0

		10,700		0.0

		10,800		0.0

		10,900		0.0

		11,000		0.0

		11,100		0.0

		11,200		0.0

		11,300		0.0

		11,400		0.0

		11,500		0.0

		11,600		0.0

		11,700		0.0

		11,800		0.0

		11,900		0.0

		12,000		0.0

		12,100		0.0

		12,200		0.0

		12,300		0.0

		12,400		0.0

		12,500		0.0

		12,600		0.0

		12,700		0.0

		12,800		0.0
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